Publications

of the research group Prof. Dr Andreas Stolz

Article:

Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: A step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases.
Ferraroni, M., I. Matera, L. Steimer, S. Bürger, A. Stolz, A. Scozzafava & F. Briganti. J. Struct. Biol. 177: 431-438 (2012).

The generation of a 1-hydroxy-2-naphthoate 1,2-dioxygenase by single point mutations of salicylate 1,2-dioxygenase. Rational design of mutants and the crystal structures of the A85H and W104Y variants.
Ferraroni, M., L. Steimer, I. Matera, S. Bürger, A. Scozzafava, A. Stolz & F. Briganti. J. Struct. Biol. (2012)
http://dx.doi.org/10.1016/j.jsb.2012.08.007
 

Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: Crystal structure of a peculiar ring cleaving dioxygenase.
Matera, I, M. Ferraroni, S. Bürger, A. Stolz. & F. Briganti.
J. Mol. Biol. 380: 856-868 (2008).


Preliminary crystallographic analysis salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
Matera, I., M. Ferraroni, S. Bürger, A. Stolz & F. Briganti
Acta Cryst. F 62: 553-555 (2006).

Pusillimonas noertemanni, gen. nov. sp. nov., a new member of the family Alcaligenaceae which degrades substituted salicylates.
Stolz, A., S. Bürger, A.E. Kuhm, P. Kämpfer & H.J. Busse.
Int. J. Syst. Evol. Microbiol. 55, 1077-1081 (2005).

Biochemical and molecular characterization of a ring-fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans.
Hintner, J.-P., T. Reemtsma & A. Stolz.
J. Biol. Chem. 279, 37250-37260 (2004).

Direct ring-fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans.
Hintner, J.-P., C. Lechner, U. Riegert, A. E. Kuhm, T. Storm, T. Reemtsma & A. Stolz.
J. Bacteriol. 183, 6936-6942 (2001).

Altering catalytical properties of 3-chlorocatechol-oxidizing extradiol dioxygenase from Sphingomonas xenovorans BN6 by random mutagenesis.
Riegert, U., S. Bürger & A. Stolz.
J. Bacteriol. 183, 2322-2330 (2001).

Cloning of the genes for a 4-sulfocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulfocatechol.
Contzen, M., S. Bürger & A. Stolz.
Mol. Microbiol. 41, 199-205 (2001).

Catalytical properties of the 3-chlorocatechol-oxidizing 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. BN6.
Riegert, U., G.Heiss, A.E.Kuhm, C.Müller, M.Contzen, H.-J.Knackmuss & A.Stolz.
J. Bacteriol. 181, 4812-4817 (1999).

Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde.
Riegert, U., G.Heiss, P.Fischer & A.Stolz.
J. Bacteriol. 180, 2849-2853 (1998).

Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad.
Heiss, G., C.Müller, J.Altenbuchner & A.Stolz.
Microbiology 143, 1691-1699 (1997).

Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol.
Hammer, A., A.Stolz & H.-J.Knackmuss.
Arch. Microbiol. 166, 92-100 (1996).

Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6.
Heiss, G., A.Stolz, A.E.Kuhm, C.Müller, J.Klein, J.Altenbuchner & H.-J.Knackmuss.
J. Bacteriol. 177, 5865-5871 (1995).

Bacterial metabolism of 5-aminosalicylic acid: Initial ring-cleavage.
A.Stolz, B.Nörtemann & H.-J.Knackmuss.
Biochem. J. 282, 675-680 (1992).

Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids.
Kuhm, A.E., A.Stolz, K.-L.Ngai & H.-J.Knackmuss.
J. Bacteriol. 173, 3795-3802 (1991).

Dissertations:

Eine neuartige bakterielle Dioxygenase mit der Fähigkeit zur direkten Spaltung von Salicylat.
Jan-Peter Hintner (2004)

Eine neuartige bakterielle Dioxygenase mit der Fähigkeit zur extradiolen Spaltung von chlorierten Brenzkatechinen.
Ulrich Riegert (2000)

Diploma:

Structural and mutational analysis of a gentisate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans
Lenz Steimer (2009)

Article:

Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases.
Bürger, S. & A. Stolz.
Appl. Microb. Biotechnol. 87:2067-2076 (2010).

Structural and replicative diversity of large plasmids from polycyclic aromatic compounds and xenobiotics degrading Shingomonas strains.
Basta, T., S. Bürger & Stolz, A.
Microbiology 151: 2025-2037 (2005)

Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases.
Rau, J. & A. Stolz.
Appl. Environ. Microbiol. 69, 3448-3455 (2003).

Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24.
Blümel, S. & A. Stolz.
Appl. Microbiol. Biotechnol. 62, 186-190 (2003).

Effects of different quinoide redox mediators on the anaerobic reduction of azo dyes by bacteria.
Rau, J., H.-J.Knackmuss & A.Stolz
Env. Sci. Technol. 36, 1497-1504 (2002).

Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F.
Blümel, S., H.-J.Knackmuss & A.Stolz
Appl. Environ. Microbiol. 68,3948-3955 (2002).

Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6.
Keck, A., J. Rau, T. Reemtsma, A. Stolz & J. Klein
Appl. Environ. Microbiol. 68, 4341-4349 (2002).

Enhanced anaerobic degradation of polymeric azo compounds by Escherichia coli in the presence of low molecular weight redox mediators.
Rau, J., B. Maris, R. Kinget, C. Samyn, G. Van den Mooter & A. Stolz
J. Pharm. Pharmacol. 54, 1471-1479 (2002).

Pigmentiphaga kullae gen. nov., sp. nov. , a new member of the family Alcaligenaceae with the ability to decolorize aerobically azo dyes.
Blümel, S, B. Mark, H.-J. Busse, P. Kämpfer & A. Stolz,
Int. J. Syst. Evol. Bacteriol. 51, 1867-1871 (2001).

Xenophilus azovorans gen. nov. sp. nov., a soil bacterium able to degrade azo dyes of the Orange II type.
Blümel, S., H.J. Busse, A Stolz & P. Kämpfer.
Int. J. Syst. Evol. Bacteriol. 51, 1831-1837 (2001).

Basic and applied aspects in the microbial degradation of azo dyes.
Stolz, A.
Appl. Microbiol. Biotechnol. 56, 69-80 (2001).

The role of cytoplasmatic flavin reductases in the bacterial reduction of azo dyes.
Russ, R., J.Rau & A.Stolz.
Appl. Environ. Microbiol. 66, 1429-1434 (2000).

Autooxidation reactions of different aromatic ortho-aminohydroxynaphthalenes which are formed during the anaerobic reduction of sulfonated azo dyes.
M. Kudlich, M.J. Hetheridge, H.-J. Knackmuss, and A. Stolz,
Environ. Sci. Technol. 33, 896-901 (1999).

Mögliche Strategien für den mikrobiellen Abbau sulfonierter Azofarbstoffe.
S. Blümel, M. Kudlich und A. Stolz,
In: A. Kornmüller (Hrsg.), Behandlung von Abwässern der Textilveredlung; Schriftenreihe Biologische Abwasserreinigung 9, TU Berlin. ISBN 3-79831734-8 (1997).

Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy.
S. Blümel, M. Contzen, M. Lutz, A. Stolz, and H.-J. Knackmuss,
Appl. Envir. Microbiol. 64, 2315-2317 (1998). Externer Link[Abstract]

Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction.
M. Kudlich, A. Keck, J. Klein, and A. Stolz,
Appl. Environ. Microbiol. 63, 3691-3694 (1997).

Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6.
A. Keck, J. Klein, M. Kudlich, A. Stolz, H.-J. Knackmuss, and R. Mattes,
Appl. Environ. Microbiol. 63, 3684-3690 (1997). Externer Link[Abstract]

Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture.
M. Kudlich, P.L. Bishop, H.-J. Knackmuss, and A. Stolz,
Appl. Microbiol. Biotechnol. 46, 597-603 (1996). Externer Link[Abstract]

Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium.
W. Haug, A. Schmidt, B. Nörtemann, D.C. Hempel, A. Stolz, and H.-J. Knackmuss,
Appl. Environ. Microbiol. 57, 3144-3149 (1991).

Vollständige bakterielle Mineralisation eines sulfonierten Azofarbstoffes.
W. Haug, B. Nörtemann, A. Schmidt, D.C. Hempel, A. Stolz und H.-J. Knackmuss,
GWF Wasser - Abwasser 132, 249-251 (1991).

Dissertationen:

Die anaerobe Reduktion von Azofarbstoffen durch Bakterien in Gegenwart von Redoxmediatoren.
J. Rau (2002).

Der aerobe Abbau von Azofarbstoffen durch Braunfäule-Pilze und Bakterien.
Silke Blümel (2001).

Der Abbau von Azofarbstoffen durch Mikroorganismen: Mechanismus der reduktiven Spaltung und Charakterisierung von Reaktionsprodukten
Michael Kudlich (1997). [Kurzfassung]

Diploma:

Aarobes Wachstum eines Bakterienstammes mit dem Azofarbstoff 4-Sulfo-4'-carboxyazobenzol
Silke Blümel (1996)

Abbau des Azofarbstoffes MY3 durch immobilisierte Zellen der Stämme BN6 und 5AS1
Michael Kudlich (1995)

Untersuchungen zum Abbau des Azofarbstoffes Mordant Yellow 3 durch eine 6-Aminonaphthalin-2-sulfonsäure verwertende Mischkultur
Wolfgang Haug (1990)

Article:


4-Sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2.
Halak, S., T. Basta, S. Bürger, M. Contzen, V. Wray, D.H. Pieper & A. Stolz.
J. Bacteriol. 189:6998-7006 (2007).

Structure and function of the 3-carboxy-cis,cis-muconate lactonizing enzyme from the protocatechuate degradative pathway of Agrobacterium radiobacter S2.
Halak, S., L. Lehtiö, T. Basta, S. Bürger, M. Contzen, A. Stolz. & A. Goldman.
FEBS Journal 273: 5169-5182 (2006).

Characterization of the genes encoding three 3-carboxy-cis,cis-muconate lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2.
Halak, S., T. Basta, S. Bürger, M. Contzen & A. Stolz.
Microbiology 152: 3207-3216 (2006).

Detection and characterization of conjugative degradative plasmids in xenobiotics degrading Sphingomonas strains.
Basta, T., A. Keck, J. Klein & A. Stolz.
J. Bacteriol. 186, 3862-3872 (2004).

Cloning of the genes for a 4-sulfocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulfocatechol.
Contzen, M., S. Bürger & A. Stolz.
Mol. Microbiol. 41, 199-205 (2001).

Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism.
Contzen, M., E.R.B. Moore, S. Blümel, A. Stolz & P. Kämpfer.
System. Appl. Microbiol. 23, 487-493 (2000).

Characterization of the genes for two protocatechuate 3,4-dioxygenases from the catechol-4-sulfonate degrading bacterium Agrobacterium radiobacter strain S2.
Contzen, M. & A.Stolz.
J. Bacteriol. 182, 6123-6129 (2000).

Description of Sphingomonas xenophaga for strains BN6 and N,N which degrade xenobiotic aromatic compounds.
Stolz, A., C.Schmidt, E.B.Denner, H.-J.Busse, T.Egli & P.Kämpfer.
Int. J. Syst. Evol. Bacteriol. 50, 35-41 (2000).

Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6.
Stolz, A.
Int. J. Ind. Microbiol. Biotechnol. 23, 391-399 (1999).

Description of Pseudaminobacter gen. nov. with two new species P. salicylatoxidans sp. nov. and P. defluvii sp. nov.
P. Kämpfer, C. Müller, M. Mau, A. Neef, G. Auling, H.-J. Busse, A.M. Osborn, and A. Stolz,
Int. J. Syst. Bacteriol. 49, 887-889 (1999).

Initial transformation in the biodegradation of benzothiazoles by Rhodococcus isolates.
H. De Wever, K. Vereecken, A. Stolz, and H. Verachtert,
Appl. Environ. Microbiol. 64, 3270-3274 (1998). Externer Link[Abstract]

Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad.
G. Heiss, C. Müller, J. Altenbuchner, and A. Stolz,
Microbiology 143, 1691-1699 (1997). Externer Link[Abstract]

Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol.
A. Hammer, A. Stolz, and H.-J. Knackmuss,
Arch. Microbiol. 166, 92-100 (1996). Externer Link[Abstract]

Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture.
E. Dangmann, A. Stolz, A.E. Kuhm, A. Hammer, B. Feigel, N. Noisommit-Rizzi, M. Rizzi, M. Reuß, and H.-J. Knackmuss,
Biodegradation 7, 223-229 (1996).

Degradation of benzene 1,3-disulfonate by a mixed bacterial culture.
M. Contzen, R.-M. Wittich, H.-J. Knackmuss, and A. Stolz,
FEMS Microbiol. Lett. 136, 45-50 (1996).

Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6.
G. Heiss, A. Stolz, A.E. Kuhm, C. Müller, J. Klein, J. Altenbuchner, and H.-J. Knackmuss,
J. Bacteriol. 177, 5865-5871 (1995). Externer Link[Abstract]

Aerobic biodegradation of 3-aminobenzoate by Gram-negative bacteria involves intermediate formation of 5-aminosalicylate as ring-cleavage substrate.
R. Russ, C. Müller, H.-J. Knackmuss, and A. Stolz,
FEMS Microbiol. Lett. 122, 137-144 (1994).

Conversion of substituted naphthalenesulfonates by Pseudomonas sp. BN6.
B. Nörtemann, A.E. Kuhm, H.-J. Knackmuss, and A. Stolz,
Arch. Microbiol. 161, 320-327 (1994). Externer Link[Abstract]

2-Hydroxychromene-2-carboxylate isomerase from bacteria that degrade naphthalenesulfonates.
A.E. Kuhm, H.-J. Knackmuss, and A. Stolz,
Biodegradation 4, 155-162 (1993).

Purification and properties of 2'-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates.
A.E. Kuhm, H.-J. Knackmuss, and A. Stolz,
J. Biol. Chem. 268, 9484-9489 (1993).

5-Hydroxyquinoline-2-carboxylic acid, a dead-end metabolite from the bacterial oxidation of 5-aminonaphthalene-2-sulfonic acid.
B. Nörtemann, A. Glässer, R. Machinek, G. Remberg, and H.-J. Knackmuss,
Appl. Environ. Microbiol. 59, 1898-1903 (1993).

Bacterial metabolism of 5-aminosalicylic acid: enzymic conversion to L-malate, pyruvate and ammonia.
A. Stolz and H.-J. Knackmuss,
J. Gen. Microbiol. 139, 1019-1025 (1993).

Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9.
A. Stolz and H.-J. Knackmuss,
FEMS Microbiol. Lett. 108, 219-224 (1993).

Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture.
B.J. Feigel and H.-J. Knackmuss,
Arch. Microbiol. 159, 124-130 (1993).

Bacterial metabolism of 5-aminosalicylic acid.
A. Stolz, B. Nörtemann, and H.-J. Knackmuss,
Biochem. J. 282, 675-680 (1992).

Der bakterielle Abbau von 2,6-Naphthalindisulfonsäure mit immobilisierten Mikroorganismen.
R. Krull, B. Nörtemann, A.E. Kuhm, D.C. Hempel und H.-J. Knackmuss,
GWF Wasser - Abwasser 132, 352-354 (1991).

Abbau von Sulfanilsäure durch eine syntrophe Zweispecieskultur.
B.J. Feigel und H.-J. Knackmuss,
GWF Wasser - Abwasser 132, 245-246 (1991).

Degradation of 6-aminonaphthalene-2-sulphonic acid by mixed cultures: kinetic analysis.
R. Diekmann, B. Nörtemann, D.C. Hempel, and H.-J. Knackmuss,
Appl. Microbiol. Biotechnol. 29, 85-88 (1988).

Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid.
B.J. Feigel and H.-J. Knackmuss,
FEMS Microbiol. Letters 55, 113-118 (1988).

Abbau sulfonierter Aromaten.
B. Nörtemann und H.-J. Knackmuss.
GWF Wasser - Abwasser 129, 21-25 (1988).

Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates.
B. Nörtemann, J. Baumgarten, H.G. Rast, and H.-J. Knackmuss,
Appl. Environ. Microbiol. 52, 1195-1202 (1986).

 

Dissertationen:

The function of large degradative plasmids in sphingomonads.
Tamara Basta (2004).

Molekulare Grundlagen des Abbaus von 4-Sulfocatechol über einen modifizierten Protocatechuat-Weg.
Matthias Contzen (2000).

Verbesserung der Abbauleistung des Bakterienstammes BN6 gegenüber sulfonierten aromatischen Verbindungen - Vergleich zwischen Hybridorganismen und Mischkultur
Rainer Ruß (1996). [Kurzfassung]

Neuartige extradiol spaltende Dioxygenasen aus dem naphthalinsulfonsäureabbauenden Bakterienstamm BN6: Klonierung der Gene und biochemische Analyse der Genprodukte
Gesche Heiss (1996). [Kurzfassung]

Anreicherung und charakterisierung der am Abbau von 4-Aminobenzolsulfonat beteiligten ringspaltenden Enzyme aus Hydrogenophaga palleronii und Agrobacterium radiobacter
Angela Hammer (1995).

Charakterisierung der am Metabolismus substituierter Naphthalinsulfonsäuren durch Pseudomonas sp. BN6 beteiligten Enzyme
Andrea Kuhm (1992).

Synergistischer Abbau von 4-Aminobenzolsulfonat durch Hydrogenophaga palleronii und Agrobacterium radiobacter
Burkard Feigel (1990).

Metabolismus von Amino- und Hydroxysalicylsäuren durch einen Bakterienstamm der Gattung Pseudomonas
Andreas Stolz (1989).

 

Diploma:

Bakterieller Abbau von 1,3-Benzoldisulfonsäure durch eine neu isolierte Mischkultur
Matthias Contzen (1995).

Syntrophe Wechselwirkungen beim Abbau von 4-Aminobenzolsulfonat durch eine Zweispezieskultur
Esther Dangmann (1993).

Klonierung einer 1,2-Dihydroxynaphthalin-Dioxygenase aus Pseudomonas vesicularis BN6
Joachim Baumeister (1992).

Bakterieller Abbau von 3- und 4-Aminobenzoat
Rainer Ruß (1991).

Article:

Synthesis of (R)-mandelic acid and (R)-mandelic acid amide by recombinant E. coli strains expressing a plant-derived (R)-specific oxynitrilase and an arylacetonitrilase from Pseudomonas fluorescens EBC191.
Müller, E., O. Sosedov, J.A.D Gröning & A. Stolz.  
Biotechnol. Lett. 43: 287-296 (2021).

Comparative analysis of the conversion of mandelonitrile and 2-phenylpropionitrile by a large set of variants generated from a nitrilase originating from Pseudomonas fluorescens EBC191. 
Stolz, A., E. Eppinger, O. Sosedov & C. Kiziak. 
Molecules 24(23): 4232 (2019).

Conversion of phenylglycinonitrile by recombinant Escherichia coli cells synthesizing variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191. 
Eppinger, E. & A. Stolz. 
Appl. Microbiol. Biotechnol. 103: 6737-6746 (2019).

Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. 
Brunner, S., E. Eppinger, S. Fischer, J. Gröning & A. Stolz. 
World J. Microbiol. Biotechnol. 34:91, doi.org/10.1007/s11274-018-2477-9 (2018)

Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis.
Sosedov, O. & A. Stolz. 
Appl. Microbiol. Biotechnol. 99:2623-2635 (2015).

Enzymatic cascade synthesis of (S)-2-hydroxycarboxylic amides and acids: Cascade reactions employing a hydroxynitrile lyase, nitrile-converting enzymes and an amidase.
van Rantwijk, F & A. Stolz. 
J. Mol. Catal. B 114:25-30 (2015).

Nitrile converting enzymes involved in natural and synthetic cascade reactions.
Martínková, L., A. Stolz, F. van Rantwijk, N. D’Antona, D. Brady & L. G. Otten.
In S. Riva & W.-D. Fessner (eds.) Cascade Biocatalysis, Wiley, Weinheim, 249-270 (2014).

Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants which form increased amounts of mandeloamide from mandelonitrile. 
Sosedov, O. & A. Stolz.
Appl. Microbiol. Biotechnol. 98:1595-1607 (2014).

The combi-CLEA approach: cascade synthesis of enantiomerically pure (S)-mandelic acid. 
Chmura, A., S. Rustler, M. Paravidino, F. van Rantwijk, A. Stolz & R.A. Sheldon.
Tetrahedron Asymm. 24:1225-1232 (2013).

Application of a recombinant Escherichia coli whole cell catalyst synthesizing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide.
Baum, S, F. van Rantwijk & A. Stolz. Adv. Synth. Catal. 354: 113-122 (2012)

Conversion of sterically demanding alpha-alpha-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
Baum, S., D.S. Williamson, T. Sewell & A. Stolz. Appl. Environ. Microbiol. 78: 48-57 (2012).

Influence of point mutations near the active site on catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa.
Petříčková, A., O. Sosedov, S. Baum, A. Stolz & L. Martínková. J. Mol. Catal. B Enzym. 77: 74-80 (2012).
 

Construction and application of variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191 which form increased amounts of acids or amides.
Sosedov, O., S. Baum, S. Bürger, K. Matzer, C. Kiziak & A. Stolz.
Appl. Environ. Microbiol. 76:3668-3674 (2010).

Identification of amino acid residues which are responsible for the enatioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC 191.
Kiziak, C. & A. Stolz.
Appl. Environ. Microbiol. 75:5592-5599 (2009).

Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandeloamide from benzaldehyde and cyanide.
Sosedov, O., K. Matzer, S. Bürger, C. Kiziak, S. Baum, J. Altenbuchner, A. Chmura, F. van Randwijk & A. Stolz.
Adv. Synth. Catal. 351:1531-1538 (2009).

Characterization of the substrate specificity of the nitrile hydrolysing system of the acidotolerant black yeast Exophiala oligosperma R1.
Rustler, S., A. Chmura, R.A. Sheldon & A. Stolz.
Stud. Mycol. 61: 165-174 (2008).

Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid.
Rustler, S., H. Motejadded, J. Altenbuchner & A. Stolz.
Appl. Microbiol. Biotechnol. 80:87-97 (2008).

Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis.
Kaul, P., A. Stolz & U.C. Banerjee.
Adv. Synth. Catal. 349:2167-2176 (2007).

Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191.
Rustler, S., A. Müller, V. Windeisen, A. Chmura, B. Fernandes, C. Kiziak, & A. Stolz.
Enzyme Microb. Technol. 40:598-606 (2007).

Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast- Exophiala oligosperma R1
Rustler, S. & A. Stolz
Appl. Microb. Biotechnol. 75:899-908 (2007).

Influence of different carboxyterminal mutations on the substrate-, reaction-, and enantiospecifity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
Kiziak, C., J.Klein & A. Stolz.
PEDS-Protein Engineering, Design and Selection 20:385-396 (2007).

Nitrile hydratase activity of a recombinant nitrilase.
Fernandes, B C. M.,C. Mateo,C. Kiziak, J. Wacker, A. Chmura, F. van Rantwijk, A. Stolz, & R. A. Sheldon.
Adv. Synth. Catal. 348:2597-2603 (2006).

Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade. A nitrilase surprsisingly shows nitrile hydratase activity.
Mateo, C., A. Chmura, S. Rustler, F. van Rantwijk, A. Stolz & R.A. Sheldon.
Tetrahedron Asymmetry 17:320-323 (2006).

Stabilization of oxygen-labile nitrilases via co-aggregation with polyethyleneimine.
Mateo, C., B. Fernandes, F. van Rantwijk, A. Stolz & R.A Sheldon.
J. Mol. Catal. B 38: 154-157 (2006).

Nitrilase from Pseudomonas fluorescens EBC 191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme.
Kiziak, C., D. Conradt, A. Stolz, R. Mattes & J. Klein.
Microbiology 151: 3639-3648 (2005).

Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein.
Heinemann, U., D. Engels, S. Bürger, C. Kiziak, R. Mattes & A.Stolz.
Appl. Environ. Microbiol. 69, 4359-4366 (2003).

Conversion of aliphatic 2-acetoxynitriles by nitriles hydrolysing bacteria.
Heinemann, U., C. Kiziak, S. Zibek, N. Layh, M. Schmidt, H. Griengl & A. Stolz.
Appl. Microbiol. Biotechnol. 63, 274-281 (2003).

Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50.
Trott. S., S. Bürger, C. Calaminus & A. Stolz.
Appl. Environ. Microbiol. 68, 3279-3286 (2002).

Genetic and biochemical characterization of an enantioselective amidase from Agrobacterium tumefaciens strain d3.
Trott, S., R. Bauer, H.-J. Knackmuss & A. Stolz.
Microbiology UK 147, 1815-1824 (2001).

Purification and characterization of Rhodococcus equi A4 nitrile hydratase that enatioselectively hydrates substituted 2-phenylpropionitriles.
Prepechalová, I., L.Martinková, A.Stolz, M.Ovesná, K. Bezouska & V.Kren.
Appl. Microbiol. Biotechnol. 55, 150-156 (2001).

Hydrolysis of D,L-phenylglycine nitrile by new bacterial cultures.
Wegman, M.A., U.Heinemann, F.van Randwijk, A.Stolz & R.A.Sheldon.
J. Mol. Catal. B 11, 249-253 (2001).

Stereoretentive nitrile hydratase catalysed hydration of D-phenylglycine nitrile.
Wegman, M.A., U.Heinemann, A.Stolz, F.van Randwijk & R.A.Sheldon.
Org. Process Res. Develop. 4, 318-322 (2000).

Enantioselective nitrile hydratases and amidases from different bacterial isolates.
A. Stolz, S. Trott, M. Binder, R. Bauer, B. Hirrlinger, N. Layh, and H.-J. Knackmuss,
J. Mol. Catal. B5, 137-141 (1998).

Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d3.
R. Bauer, H.-J. Knackmuss, A. Stolz,
Appl. Microbiol. Biotechnol. 49, 89-95 (1998). Externer Link[Abstract]

Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical lossen rearrangement to a chiral amine.
B. Hirrlinger and A. Stolz,
Appl. Environ. Microbiol. 63, 3390-3393 (1997).

Enrichment strategies for nitrile-hydrolysing bacteria.
N. Layh, B. Hirrlinger, A. Stolz, and H.-J. Knackmuss,
Appl. Microbiol. Biotechnol. 47, 668-674 (1997). Externer Link[Abstract]

Enantioselectivity of the nitrile hydratase from Rhodococcus equi A4 towards substituted (R,S)-2-arylpropionitriles.
L. Martinkova, A. Stolz, and H.-J. Knackmuss,
Biotechnol. Lett. 18, 1073-1076 (1996).

Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-aryl-propionamides.
B. Hirrlinger, A. Stolz, and H.-J. Knackmuss,
J. Bacteriol. 178, 3501-3507 (1996). Externer Link[Abstract]

Enantioselective hydrolysis of ketoprofen amide by Rhodococcus sp. C3II and Rhodococcus erythropolis MP50.
N. Layh, H.-J. Knackmuss, and A. Stolz,
Biotechnol. Lett. 17, 187-192 (1995).

Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3.
R. Bauer, B. Hirrlinger, N. Layh, A. Stolz, and H.-J. Knackmuss,
Appl. Microbiol. Biotechnol. 42, 1-7 (1994). Externer Link[Abstract]

Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates.
N. Layh, A. Stolz, J. Böhme, F. Effenberger, and H.-J. Knackmuss,
J. of Biotechn. 33, 175-182 (1994).

Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases.
N. Layh, A. Stolz, S. Förster, F. Effenberger, and H.-J. Knackmuss,
Arch. Microbiol. 158, 405-411 (1992).

 

Dissertations:

Steigerung der Nitril-Hydratase-Aktivität der Nitrilase aus Pseudomomonas fluorescens EBC191 
O. Sosedov (2012)

Die enzymatische Hydrolyse von Nitrilen unter sauren Bedingungen durch neu isolierte und rekombinante Mikroorganismen und die Verwendung von säuretoleranten Ganzzellbiokatalysatoren zur enantioselektiven Synthese von a-Hydroxycarbonsäuren.
S. Rustler (2011)

Charakterisierung einer neuartigen Nitrilase aus dem Cyanobakterium Synechocystis sp. PCC 6803.
U. Heinemann (2003).

Genetik und biochemische Aspekte der enantioselektiven Amidasen aus Rhodococcus erythropolis MP50 und Agrobacterium tumefaciens d3.
Sandra Trott (2000).

Untersuchungen zur Substratspezifität und Enantioselektivität der Nitril-Hydratase und Amidase aus Agrobacterium tumefaciens d3
Reinhard Bauer (1997). [Kurzfassung]

Darstellung enantiomerenreiner 2-substituierter aliphatischer Carbonsäuren aus Nitrilen
Michael Binder (1997). [Kurzfassung]

Enantioselektive Verseifung von razemischen 2-Arylpropionamiden, a -Aminonitrilen und a -Aminoamiden durch bakterielle Enzyme
Beate Hirrlinger (1996).

Untersuchung nitrilhydrolysierender Enzymsysteme
Norman Layh (1994). [Kurzfassung]

 

Diploma:

Umsatz aliphatischer Nitrile mit der Arylacetonitrilase aus Pseudomonas fluorescens
Siegfried Brunner (2016).

Charakterisierung, Reinigung und N-terminale Sequenzierung der Nitrilase aus Pseudomonas fluorescens EBC 191
Ralf Moser (1996).

Enantioselektive Hydrolyse von 2-Arylpropionitrilen durch bakterielle Enzyme
Reinhard Bauer (1993).

Enantioselektive Oxidation von 2-(R,S)-(4'-Hydroxyphenyl)propansäure durch das Enzym 4-Hydroxyphenylessigsäure-1-Hydroxylase aus Pseudomonas acidovorans
Beate Hirrlinger (1991).

Stereoselektive Verseifung von Acetylmandelsäurenitril durch bakterielle Enzyme
Norman Layh (1990).

Bachelor-Thesis:

Enantioselektive Synthese von 2-Hydroxycarboxamiden durch eine bienzymatische Kaskadenreaktion.
Erik Müller (2019).

Contact

Andreas Stolz

apl. Prof. Dr.
To the top of the page